Space-borne observations link the tropical atlantic ozone maximum and paradox to lightning
نویسنده
چکیده
The potential enhancement of tropospheric column ozone values over the Tropical Atlantic Ocean on a seasonal basis by lightning is investigated using satellite derived ozone data, TRMM lightning data, ozonesonde data and NCEP reanalysis during 1998–2001. Our results show that the number of lightning flashes in Africa and South America reach a maximum during September, October and November (SON). The spatial patterns of winds in combination with lightning from West Africa, Central Africa and South America is likely responsible for enriching middle/upper troposphere ozone over the Tropical South Atlantic during SON. Moreover, lightning flashes are high in the hemisphere opposite to biomass burning during December, January, and February (DJF) and June, July and August (JJA). This pattern leads to an enrichment of ozone in the middle/upper troposphere in the Southern Hemisphere Tropics during DJF and the Northern Hemisphere Tropics during JJA. During JJA the largest numbers of lightning flashes are observed in West Africa, enriching tropospheric column ozone to the north of 5 S in the absence of biomass burning. During DJF, lightning is concentrated in South America and Central Africa enriching tropospheric column ozone south of the Equator in the absence of biomass burning.
منابع مشابه
Space-borne observations link
Introduction Conclusions References Tables Figures Back Close Abstract Introduction Conclusions References Tables Figures Back Close Abstract The causes of high tropospheric column ozone values over the Tropical Atlantic Ocean during September, October, and November (SON) are investigated by examining lightning during 1998–2001. The cause for high tropospheric column ozone in the hemisphere opp...
متن کاملLinking horizontal and vertical transports of biomass fire emissionsto the tropical Atlantic ozone paradox during the Northern Hemisphere winter season: climatology
During the Northern hemisphere winter season, biomass burning is widespread in West Africa, yet the total tropospheric column ozone values (<30 DU) over much of the Tropical Atlantic Ocean (15 N–5 S) are relatively low. At the same time, the tropospheric column ozone values in the Southern Tropical Atlantic are higher than those in the Northern Hemisphere (ozone paradox). We examine the causes ...
متن کاملInterpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations
[1] We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with n...
متن کاملHorizontal and vertical transports of biomass fire emissions
Introduction Conclusions References Tables Figures Back Close Abstract Introduction Conclusions References Tables Figures Back Close Abstract During the Northern hemisphere winter season, biomass burning is widespread in West Africa, yet the total tropospheric column ozone values (<30 DU) over much of the Tropical Atlantic Ocean (15 • N–5 • S) are relatively low. At the same time, the tro-posph...
متن کاملGlobal Ozone–CO Correlations from OMI and AIRS: Constraints on Tropospheric Ozone Sources
We present a global data set of free tropospheric ozone–CO correlations with 2× 2.5 spatial resolution from the Ozone Monitoring Instrument (OMI) and Atmospheric Infrared Sounder (AIRS) satellite instruments for each season of 2008. OMI and AIRS have near-daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO ...
متن کامل